Testing SATA Express And Why We Need Faster SSDs

AnandTech | Testing SATA Express And Why We Need Faster SSDs

During the hard drive era, the Serial ATA International Organization (SATA-IO) had no problems keeping up with the bandwidth requirements. The performance increases that new hard drives provided were always quite moderate because ultimately the speed of the hard drive was limited by its platter density and spindle speed. Given that increasing the spindle speed wasn’t really a viable option for mainstream drives due to power and noise issues, increasing the platter density was left as the only source of performance improvement. Increasing density is always a tough job and it’s rare that we see any sudden breakthroughs, which is why density increases have only given us small speed bumps every once in a while. Even most of today’s hard drives can’t fully saturate the SATA 1.5Gbps link, so it’s obvious that the SATA-IO didn’t have much to worry about. However, that all changed when SSDs stepped into the game.

SSDs no longer relied on rotational media for storage but used NAND, a form of non-volatile storage, instead. With NAND the performance was no longer dictated by the laws of rotational physics because we were dealing with all solid-state storage, which introduced dramatically lower latencies and opened the door for much higher throughputs, putting pressure on SATA-IO to increase the interface bandwidth. To illustrate how fast NAND really is, let’s do a little calculation.

It takes 115 microseconds to read 16KB (one page) from IMFT’s 20nm 128Gbit NAND. That works out to be roughly 140MB/s of throughput per die. In a 256GB SSD you would have sixteen of these, which works out to over 2.2GB/s. That’s about four times the maximum bandwidth of SATA 6Gbps. This is all theoretical of course—it’s one thing to dump data into a register but transferring it over an interface requires more work. However, the NAND interfaces have also caught up in the last couple of years and we are now looking at up to 400MB/s per channel (both ONFI 3.x and Toggle-Mode 2.0). With most client platforms being 8-channel designs, the potential NAND-to-controller bandwidth is up to 3.2GB/s, meaning it’s no longer a bottleneck.

Given the speed of NAND, it’s not a surprise that the SATA interface quickly became a bottleneck. When Intel finally integrated SATA 6Gbps into its chipsets in early 2011, SandForce immediately came out with its SF-2000 series controllers and said, “Hey, we are already maxing out SATA 6Gbps; give us something faster!” The SATA-IO went back to the drawing board and realized that upping the SATA interface to 12Gbps would require several years of development and the cost of such rapid development would end up being very high. Another major issue was power; increasing the SATA protocol to 12Gbps would have meant a noticeable increase in power consumption, which is never good.

Full Story: AnandTech | Testing SATA Express And Why We Need Faster SSDs.